Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38543552

RESUMEN

Neutralizing antibody responses from COVID-19 vaccines are pivotal in conferring protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Effective COVID-19 vaccines and assays measuring neutralizing antibodies against emerging variants (i.e., XBB.1.5, XBB.1.16, and XBB.2.3) are needed. The use of biosafety level (BSL)-3 laboratories for live virus assays results in higher costs and a longer turnaround time; therefore, a BSL-2-based pseudovirus neutralization assay (PNT) was developed. The pseudoviruses were produced by cotransfecting cells with plasmids encoding a lentiviral backbone-expressing luciferase reporter; non-surface proteins for lentiviral production; and ancestral or Omicron (BA.1 and BA.5) SARS-CoV-2 spike (S) proteins. The PNT was developed and optimized in dose and kinetics experiments. The representative serum samples (COVID-19-convalescent or NVX-CoV2373-vaccinated participants enrolled in the 2019nCoV-101 trial) demonstrated a wide dynamic range. The neutralization data showed robust correlation with validated anti-recombinant spike IgG levels and angiotensin-converting enzyme 2 inhibition titers (ancestral). This assay is suitable for measurement of the neutralization ability in clinical samples from individuals infected with SARS-CoV-2 or immunized with a COVID-19 vaccine. The results suggest that this PNT provides a lower cost, high-throughput, rapid turnaround alternative to BSL-3-based microneutralization assays and enables the discovery and development of effective vaccines against emerging variants.

2.
Microorganisms ; 11(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37512961

RESUMEN

As the COVID-19 pandemic continues, variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge. Immunogenicity evaluation of vaccines and identification of correlates of protection for vaccine effectiveness is critical to aid the development of vaccines against emerging variants. Anti-recombinant spike (rS) protein immunoglobulin G (IgG) quantitation in the systemic circulation (serum/plasma) is shown to correlate with vaccine efficacy. Thus, an enzyme-linked immunosorbent assay (ELISA)-based binding assay to detect SARS-CoV-2 (ancestral and variant strains) anti-rS IgG in human serum samples was developed and validated. This assay successfully met acceptance criteria for inter/intra-assay precision, specificity, selectivity, linearity, lower/upper limits of quantitation, matrix effects, and assay robustness. The analyte in serum was stable for up to 8 freeze/thaw cycles and 2 years in -80 °C storage. Similar results were observed for the Beta, Delta, and Omicron BA.1/BA.5/XBB.1.5 variant-adapted assays. Anti-rS IgG assay results correlated significantly with neutralization and receptor binding inhibition assays. In addition, usage of international reference standards allows data extrapolation to WHO international units (BAU/mL), facilitating comparison of results with other IgG assays. This anti-rS IgG assay is a robust, high-throughput method to evaluate binding IgG responses to S protein in serum, enabling rapid development of effective vaccines against emerging COVID-19 variants.

3.
Sci Immunol ; 8(88): eadg7015, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37191508

RESUMEN

Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Animales , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Macaca mulatta , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Inmunoglobulina G
4.
Microorganisms ; 11(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36838333

RESUMEN

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) show immune evasion of vaccine-derived immunity, highlighting the need for better clinical immunogenicity biomarkers. To address this need, an enzyme-linked immunosorbent assay-based, human angiotensin-converting enzyme 2 (hACE2) binding inhibition assay was developed to measure antibodies against the ancestral strain of SARS-CoV-2 and was validated for precision, specificity, linearity, and other parameters. This assay measures the inhibition of SARS-CoV-2 spike (S) protein binding to the receptor, hACE2, by serum from vaccine clinical trials. Inter- and intra-assay precision, specificity, linearity, lower limit of quantitation, and assay robustness parameters successfully met the acceptance criteria. Heme and lipid matrix effects showed minimal interference on the assay. Samples were stable for testing in the assay even with 8 freeze/thaws and up to 24 months in -80 °C storage. The assay was also adapted for variants (Delta and Omicron BA.1/BA.5), with similar validation results. The hACE2 assay showed significant correlation with anti-recombinant S immunoglobulin G levels and neutralizing antibody titers. This assay provides a rapid, high-throughput option to evaluate vaccine immunogenicity. Along with other clinical biomarkers, it can provide valuable insights into immune evasion and correlates of protection and enable vaccine development against emerging COVID-19 variants.

5.
Nat Commun ; 14(1): 1130, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854666

RESUMEN

SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , COVID-19/prevención & control , Papio , SARS-CoV-2/genética , Vacunas/química , Vacunas/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología
6.
Open Forum Infect Dis ; 10(1): ofac693, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36655191

RESUMEN

Background: Respiratory syncytial virus (RSV) can cause serious lung infections in young children and there is currently no available vaccine. Methods: We used complementary statistical frameworks to analyze 4 RSV serology measurements in mothers and their infants in South Africa who participated in a phase 3 maternal immunization trial of an RSV F protein nanoparticle vaccine as correlates of risk and of protection against different RSV disease endpoints. Results: We found evidence to support each antibody measurement-encompassing RSV-neutralizing antibodies and F surface glycoprotein-binding antibodies-as an inverse correlate of risk of RSV-associated acute lower respiratory tract infection with severe hypoxia in at least 1 framework, with vaccine-induced fold-rise from the maternal enrollment to day 14 samples of anti-F immunoglobulin G (IgG) binding antibodies having the most consistent evidence. This evidence includes a significant association of fold-rise anti-F IgG with vaccine efficacy (VE); achieving a baseline covariate-adjusted VE of 75% requires a vaccine-induced maternal anti-F IgG fold-rise of around 16. Neither multivariable logistic regression nor superlearning analyses showed benefit to including multiple time points or assays in the same model, suggesting a parsimonious correlate. Post hoc exploratory analyses supported adherence of vaccine-induced maternal anti-F IgG fold-rise to the Prentice criteria for a valid surrogate endpoint. Conclusions: Our results suggest that the vaccine induced protective anti-F antibody responses. If this finding is confirmed, VE could potentially be augmented by increasing these responses.

7.
Clin Infect Dis ; 76(3): 398-407, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36210481

RESUMEN

BACKGROUND: The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against coronavirus disease 2019 (COVID-19) in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover. Data to the end of the placebo-controlled phase are reported. METHODS: Adults aged 18-84 years received 2 doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who developed immunoglobulin G (IgG) against nucleocapsid protein but did not show symptomatic COVID-19 were considered asymptomatic. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses. RESULTS: Of 15 185 participants, 13 989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% confidence interval [CI], 73.3%-88.8%). Vaccine efficacy was 100% (95% CI, 17.9%-100.0%) against severe disease and 76.3% (95% CI, 57.4%-86.8%) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-protein-specific induction of interferon-γ secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups. CONCLUSIONS: A 2-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6 months postvaccination. A gradual decrease of protection suggests that a booster may be indicated. CLINICAL TRIALS REGISTRATION: EudraCT, 2020-004123-16.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , SARS-CoV-2 , Vacunas Sintéticas/efectos adversos , Inmunoglobulina G , Inmunogenicidad Vacunal , Método Doble Ciego , Anticuerpos Antivirales
8.
Vaccines (Basel) ; 10(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016226

RESUMEN

Non-human primate (NHP) efficacy data for several Ebola virus (EBOV) vaccine candidates exist, but definitive correlates of protection (CoP) have not been demonstrated, although antibodies to the filovirus glycoprotein (GP) antigen and other immunological endpoints have been proposed as potential CoPs. Accordingly, studies that could elucidate biomarker(s) that statistically correlate, whether mechanistically or not, with protection are warranted. The primary objective of this study was to evaluate potential CoP for Novavax EBOV GP vaccine candidate administered at different doses to cynomolgus macaques using the combined data from two separate, related studies containing a total of 44 cynomolgus macaques. Neutralizing antibodies measured by pseudovirion neutralization assay (PsVNA) and anti-GP IgG binding antibodies were evaluated as potential CoP using logistic regression models. The predictive ability of these models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Fitted models indicated a statistically significant relationship between survival and log base 10 (log10) transformed anti-GP IgG antibodies, with good predictive ability of the model. Neither (log10 transformed) PsVNT50 nor PsVNT80 titers were statistically significant predictors of survival, though predictive ability of both models was good. Predictive ability was not statistically different between any pair of models. Models that included immunization dose in addition to anti-GP IgG antibodies failed to detect statistically significant effects of immunization dose. These results support anti-GP IgG antibodies as a correlate of protection. Total assay variabilities and geometric coefficients of variation (GCVs) based on the study data appeared to be greater for both PsVNA readouts, suggesting the increased assay variability may account for non-significant model results for PsVNA despite the good predictive ability of the models. The statistical approach to evaluating CoP for this EBOV vaccine may prove useful for advancing research for Sudan virus (SUDV) and Marburg virus (MARV) candidate vaccines.

9.
Lancet HIV ; 9(5): e309-e322, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35489376

RESUMEN

BACKGROUND: There is a paucity of data on COVID-19 vaccines in people living with HIV-1, who could be at increased risk of severe illness and death from COVID-19. We evaluated the safety and immunogenicity of a Matrix-M adjuvanted recombinant spike protein nanoparticle COVID-19 vaccine (NVX-CoV2373; Novavax) in HIV-negative people and people living with HIV-1. METHODS: In this randomised, observer-blinded, multicentre, placebo-controlled phase 2A/B trial in South Africa, participants aged 18-84 years, with and without underlying HIV-1, were enrolled from 16 sites and randomly assigned (1:1) to receive two intramuscular injections of NVX-CoV2373 or placebo, 21 days apart. People living with HIV-1 were on stable antiretroviral therapy and had an HIV-1 viral load of less than 1000 copies per mL. Vaccine dosage was 5 µg SARS-CoV-2 recombinant spike protein with 50 µg Matrix-M adjuvant, whereas 0·9% saline was used as placebo injection (volume 0·5 mL each). All study staff and participants remained masked to study group assignment. We previously reported an interim analysis on the efficacy and safety of the NVX-CoV2373 vaccine (coprimary endpoints). In this Article, we present an expanded safety analysis for the full cohort of participants and report on the secondary objective of vaccine immunogenicity in the full cohort of people living with HIV-1 and in HIV-negative individuals overall and stratified by baseline SARS-CoV-2 serostatus. This trial is registered with ClinicalTrials.gov, NCT04533399, and the Pan-African Clinical Trials Registry, PACTR202009726132275. FINDINGS: Participants were enrolled between Aug 17 and Nov 25, 2020. The safety analysis set included 4164 HIV-negative participants (2089 in the intervention group and 2075 in the placebo group) and 244 people living with HIV-1 (122 in the intervention group and 122 in the placebo group). 1422 (34·1%) of 4164 HIV-negative people and 83 (34·0%) of 244 people living with HIV-1 were categorised as baseline SARS-CoV-2-positive (ie, anti-spike IgG reactive at enrolment or had a reactive SARS-CoV-2 nucleic acid amplification test by 14 days after the second study vaccination). In the NVX-CoV2373 group, solicited local and systemic adverse events were more common in HIV-negative participants (427 [30·6%] local and 401 [28·7%] systemic) than in people living with HIV-1 (20 [25·3%] local and 20 [25·3%] systemic) among those who were baseline SARS-CoV-2-seronegative (naive). Of the serious adverse events that occurred among HIV-negative people (of whom, two [0·1%] were baseline SARS-CoV-2-negative and four [0·6%] were baseline SARS-CoV-2-positive) and people living with HIV-1 (for whom there were no serious adverse events) in the NVX-CoV2373 group, none were assessed as related to the vaccine. Among participants who were baseline SARS-CoV-2-negative in the NVX-CoV2373 group, the anti-spike IgG geometric mean titres (GMTs) and seroconversion rates (SCRs) were lower in people living with HIV-1 (n=62) than in HIV-negative people (n=1234) following the first vaccination (GMT: 508·6 vs 1195·3 ELISA units [EU]/mL; SCR: 51·6% vs 81·3%); and similarly so 14 days after the second vaccination for GMTs (14 420·5 vs 31 631·8 EU/mL), whereas the SCR was similar at this point (100·0% vs 99·3%). In the NVX-CoV2373 group, anti-spike IgG GMTs 14 days after the second vaccination were substantially higher in those who were baseline SARS-CoV-2-positive than in those who were baseline SARS-CoV-2-seronegative for HIV-negative participants (100 666·1 vs 31 631·8 EU/mL) and for people living with HIV-1 (98 399·5 vs 14 420·5 EU/mL). This was also the case for angiotensin-converting enzyme 2 receptor-binding antibody and neutralising antibody titres. INTERPRETATION: The safety of the NVX-CoV2373 vaccine in people living with HIV-1 was similar to that in HIV-negative participants. However, people living with HIV-1 not previously exposed to SARS-CoV-2 had attenuated humoral immune responses to NVX-CoV2373 compared with their HIV-negative vaccine counterparts, but not so if they were baseline SARS-CoV-2-positive. FUNDING: Novavax and the Bill & Melinda Gates Foundation; investigational vaccine manufacturing support was provided by the Coalition for Epidemic Preparedness Innovations.


Asunto(s)
COVID-19 , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Nanopartículas , Vacunas Virales , Adyuvantes Inmunológicos , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
10.
Lancet Respir Med ; 10(2): 167-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800364

RESUMEN

BACKGROUND: The safety and immunogenicity profile of COVID-19 vaccines when administered concomitantly with seasonal influenza vaccines have not yet been reported. We therefore aimed to report the results of a substudy within a phase 3 UK trial, by evaluating the safety, immunogenicity, and efficacy of NVX-CoV2373 when co-administered with licensed seasonal influenza vaccines. METHODS: We did a planned exploratory substudy as part of the randomised, observer-blinded, placebo-controlled, phase 3 trial of the safety and efficacy of the COVID-19 vaccine (NVX-CoV2373) by co-administrating the influenza vaccine at four study hospitals in the UK. Approximately, the first 400 participants meeting the main study entry criteria-with no contraindications to influenza vaccination-were invited to join the substudy. Participants of the main study were randomly assigned (1:1) to receive two intramuscular injections of either NVX-CoV2373 (5 µg) or placebo (normal saline) 21 days apart; participants enrolled into the substudy were co-vaccinated with a single (0·5 mL) intramuscular, age-appropriate (quadrivalent influenza cell-based vaccine [Flucelvax Quadrivalent; Seqirus UK, Maidenhead] for those aged 18-64 years and adjuvanted trivalent influenza vaccine [Fluad; Seqirus UK, Maidenhead] for those ≥65 years), licensed, influenza vaccine on the opposite deltoid to that of the first study vaccine dose or placebo. The influenza vaccine was administered in an open-label manner and at the same time as the first study injection. Reactogenicity was evaluated via an electronic diary for 7 days after vaccination in addition to monitoring for unsolicited adverse events, medically attended adverse events, and serious adverse events. Immunogenicity was assessed with influenza haemagglutination inhibition and SARS-CoV-2 anti-spike protein IgG assays. Vaccine efficacy against PCR-confirmed, symptomatic COVID-19 was assessed in participants who were seronegative at baseline, received both doses of study vaccine or placebo, had no major protocol deviations affecting the primary endpoint, and had no confirmed cases of symptomatic COVID-19 from the first dose until 6 days after the second dose (per-protocol efficacy population). Immunogenicity was assessed in participants who received scheduled two doses of study vaccine, had a baseline sample and at least one post-vaccination sample, and had no major protocol violations before unmasking (per-protocol immunogenicity population). Reactogenicity was analysed in all participants who received at least one dose of NVX-CoV2373 or placebo and had data collected for reactogenicity events. Safety was analysed in all participants who received at least one dose of NVX-CoV2373 or placebo. Comparisons were made between participants of the substudy and the main study (who were not co-vaccinated for influenza). This study is registered with ClinicalTrials.gov, number NCT04583995. FINDINGS: Between Sept 28, 2020, and Nov 28, 2020, a total of 15 187 participants were randomised into the main phase 3 trial, of whom 15 139 received treatment (7569 received dose one of NVX-CoV2373 and 7570 received dose one of placebo). 431 participants were co-vaccinated with a seasonal influenza vaccine in the substudy (217 received NVX-CoV2373 plus the influenza vaccine and 214 received placebo plus the influenza vaccine). In general, the substudy participants were younger, more racially diverse, and had fewer comorbid conditions than those in the main study. Reactogenicity events were more common in the co-administration group than in the NVX-CoV2373 alone group: tenderness (113 [64·9%] of 174 vs 592 [53·3%] of 1111) or pain (69 [39·7%] vs 325 [29·3%]) at injection site, fatigue (48 [27·7%] vs 215 [19·4%]), and muscle pain (49 [28·3%] vs 237 [21·4%]). Incidences of unsolicited adverse events, treatment-related medically attended adverse events, and serious adverse events were low and balanced between the co-administration group and the NVX-CoV2373 alone group. No episodes of anaphylaxis or deaths were reported within the substudy. Co-administration resulted in no change to influenza vaccine immune response although a reduction in antibody responses to the NVX-CoV2373 vaccine was noted. NVX-CoV2373 vaccine efficacy in the substudy (ie, participants aged 18 to <65 years) was 87·5% (95% CI -0·2 to 98·4) and in the main study was 89·8% (95% CI 79·7-95·5). INTERPRETATION: To our knowledge, this substudy is the first to show the safety, immunogenicity, and efficacy profile of a COVID-19 vaccine when co-administered with seasonal influenza vaccines. Our results suggest concomitant vaccination might be a viable immunisation strategy. FUNDING: Novavax.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Adolescente , Adulto , Anciano , Vacunas contra la COVID-19 , Método Doble Ciego , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Influenza/efectos adversos , Persona de Mediana Edad , SARS-CoV-2 , Estaciones del Año , Adulto Joven
11.
N Engl J Med ; 385(13): 1172-1183, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34192426

RESUMEN

BACKGROUND: Early clinical data from studies of the NVX-CoV2373 vaccine (Novavax), a recombinant nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that contains the full-length spike glycoprotein of the prototype strain plus Matrix-M adjuvant, showed that the vaccine was safe and associated with a robust immune response in healthy adult participants. Additional data were needed regarding the efficacy, immunogenicity, and safety of this vaccine in a larger population. METHODS: In this phase 3, randomized, observer-blinded, placebo-controlled trial conducted at 33 sites in the United Kingdom, we assigned adults between the ages of 18 and 84 years in a 1:1 ratio to receive two intramuscular 5-µg doses of NVX-CoV2373 or placebo administered 21 days apart. The primary efficacy end point was virologically confirmed mild, moderate, or severe SARS-CoV-2 infection with an onset at least 7 days after the second injection in participants who were serologically negative at baseline. RESULTS: A total of 15,187 participants underwent randomization, and 14,039 were included in the per-protocol efficacy population. Of the participants, 27.9% were 65 years of age or older, and 44.6% had coexisting illnesses. Infections were reported in 10 participants in the vaccine group and in 96 in the placebo group, with a symptom onset of at least 7 days after the second injection, for a vaccine efficacy of 89.7% (95% confidence interval [CI], 80.2 to 94.6). No hospitalizations or deaths were reported among the 10 cases in the vaccine group. Five cases of severe infection were reported, all of which were in the placebo group. A post hoc analysis showed an efficacy of 86.3% (95% CI, 71.3 to 93.5) against the B.1.1.7 (or alpha) variant and 96.4% (95% CI, 73.8 to 99.5) against non-B.1.1.7 variants. Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups. CONCLUSIONS: A two-dose regimen of the NVX-CoV2373 vaccine administered to adult participants conferred 89.7% protection against SARS-CoV-2 infection and showed high efficacy against the B.1.1.7 variant. (Funded by Novavax; EudraCT number, 2020-004123-16.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunogenicidad Vacunal , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Humanos , Inyecciones Intramusculares/efectos adversos , Persona de Mediana Edad , SARS-CoV-2 , Método Simple Ciego , Vacunas Sintéticas/inmunología , Adulto Joven
12.
N Engl J Med ; 384(20): 1899-1909, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33951374

RESUMEN

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens progress toward control of the coronavirus disease 2019 (Covid-19) pandemic. In a phase 1-2 trial involving healthy adults, the NVX-CoV2373 nanoparticle vaccine had an acceptable safety profile and was associated with strong neutralizing-antibody and antigen-specific polyfunctional CD4+ T-cell responses. Evaluation of vaccine efficacy was needed in a setting of ongoing SARS-CoV-2 transmission. METHODS: In this phase 2a-b trial in South Africa, we randomly assigned human immunodeficiency virus (HIV)-negative adults between the ages of 18 and 84 years or medically stable HIV-positive participants between the ages of 18 and 64 years in a 1:1 ratio to receive two doses of either the NVX-CoV2373 vaccine (5 µg of recombinant spike protein with 50 µg of Matrix-M1 adjuvant) or placebo. The primary end points were safety and vaccine efficacy against laboratory-confirmed symptomatic Covid-19 at 7 days or more after the second dose among participants without previous SARS-CoV-2 infection. RESULTS: Of 6324 participants who underwent screening, 4387 received at least one injection of vaccine or placebo. Approximately 30% of the participants were seropositive for SARS-CoV-2 at baseline. Among 2684 baseline seronegative participants (94% HIV-negative and 6% HIV-positive), predominantly mild-to-moderate Covid-19 developed in 15 participants in the vaccine group and in 29 in the placebo group (vaccine efficacy, 49.4%; 95% confidence interval [CI], 6.1 to 72.8). Vaccine efficacy among HIV-negative participants was 60.1% (95% CI, 19.9 to 80.1). Of 41 sequenced isolates, 38 (92.7%) were the B.1.351 variant. Post hoc vaccine efficacy against B.1.351 was 51.0% (95% CI, -0.6 to 76.2) among the HIV-negative participants. Preliminary local and systemic reactogenicity events were more common in the vaccine group; serious adverse events were rare in both groups. CONCLUSIONS: The NVX-CoV2373 vaccine was efficacious in preventing Covid-19, with higher vaccine efficacy observed among HIV-negative participants. Most infections were caused by the B.1.351 variant. (Funded by Novavax and the Bill and Melinda Gates Foundation; ClinicalTrials.gov number, NCT04533399.).


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Prueba Serológica para COVID-19 , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , Seronegatividad para VIH , Seropositividad para VIH , Humanos , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Sudáfrica , Adulto Joven
13.
Mol Pharm ; 18(1): 359-376, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33322901

RESUMEN

The respiratory syncytial virus (RSV) fusion (F) protein/polysorbate 80 (PS80) nanoparticle vaccine is the most clinically advanced vaccine for maternal immunization and protection of newborns against RSV infection. It is composed of a near-full-length RSV F glycoprotein, with an intact membrane domain, formulated into a stable nanoparticle with PS80 detergent. To understand the structural basis for the efficacy of the vaccine, a comprehensive study of its structure and hydrodynamic properties in solution was performed. Small-angle neutron scattering experiments indicate that the nanoparticle contains an average of 350 PS80 molecules, which form a cylindrical micellar core structure and five RSV F trimers that are arranged around the long axis of the PS80 core. All-atom models of full-length RSV F trimers were built from crystal structures of the soluble ectodomain and arranged around the long axis of the PS80 core, allowing for the generation of an ensemble of conformations that agree with small-angle neutron and X-ray scattering data as well as transmission electron microscopy (TEM) images. Furthermore, the hydrodynamic size of the RSV F nanoparticle was found to be modulated by the molar ratio of PS80 to protein, suggesting a mechanism for nanoparticle assembly involving addition of RSV F trimers to and growth along the long axis of the PS80 core. This study provides structural details of antigen presentation and conformation in the RSV F nanoparticle vaccine, helping to explain the induction of broad immunity and observed clinical efficacy. Small-angle scattering methods provide a general strategy to visualize surface glycoproteins from other pathogens and to structurally characterize nanoparticle vaccines.


Asunto(s)
Glicoproteínas/química , Nanopartículas/química , Vacunas contra Virus Sincitial Respiratorio/química , Virus Sincitial Respiratorio Humano/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Glicoproteínas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Vacunación/métodos
14.
Science ; 370(6520): 1089-1094, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33082295

RESUMEN

Vaccine efforts to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. We performed cryo-election microscopy and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax, which is based on a full-length spike protein formulated in polysorbate 80 detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared with published spike ectodomain structures. We also observed interactions between the spike trimers, allowing formation of higher-order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.


Asunto(s)
Vacunas contra la COVID-19/química , Glicoproteína de la Espiga del Coronavirus/química , Microscopía por Crioelectrón , Humanos , Dominios Proteicos , Multimerización de Proteína
15.
Vaccines (Basel) ; 8(4)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066540

RESUMEN

Human respiratory syncytial virus (RSV) is a cause of lower respiratory tract infection in infants, young children, and older adults. There is no licensed vaccine and prophylactic treatment options are limited. The RSV fusion (F) glycoprotein is a target of host immunity and thus a focus for vaccine development. F-trimers are metastable and undergo significant rearrangements from the prefusion to a stable postfusion structure with neutralizing epitopes on intermediate structures. We hypothesize that vaccine strategies that recapitulate the breathable F quaternary structure, and provide accessibility of B-cells to epitopes on intermediate conformations, may collectively contribute to protective immunity, while rigid prefusion F structures restrict access to key protective epitopes. To test this hypothesis, we used the near full-length prefusogenic F as a backbone to construct three prefusion F variants with substitutions in the hydrophobic head cavity: (1) disulfide bond mutant (DS), (2) space filling hydrophobic amino acid substitutions (Cav1), and (3) DS, Cav1 double mutant (DS-Cav1). In this study, we compared the immunogenicity of prefusogenic F to prefusion F variants in two animal models. Native prefusogenic F was significantly more immunogenic, producing high titer antibodies to prefusogenic, prefusion, and postfusion F structures, while animals immunized with DS or DS-Cav1 produced antibodies to prefusion F. Importantly, prefusogenic F elicited antibodies that target neutralizing epitopes including prefusion-specific site zero (Ø) and V and conformation-independent neutralizing sites II and IV. Immunization with DS or DS-Cav1 elicited antibodies primarily to prefusion-specific sites Ø and V with little or no antibodies to other key neutralizing sites. Animals immunized with prefusogenic F also had significantly higher levels of antibodies that cross-neutralized RSV A and B subtypes, while immunization with DS or DS-Cav1 produced antibodies primarily to the A subtype. We conclude that breathable trimeric vaccines that closely mimic the native F-structure, and incorporate strategies for B-cell accessibility to protective epitopes, are important considerations for vaccine design. F structures locked in a single conformation restrict access to neutralizing epitopes that may collectively contribute to destabilizing F-trimers important for broad protection. These results also have implications for vaccine strategies targeting other type 1 integral membrane proteins.

16.
bioRxiv ; 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32793901

RESUMEN

Vaccine efforts against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the current COVID-19 pandemic are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. Here, we performed cryo-EM and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax based on a full-length spike protein formulated in polysorbate 80 (PS 80) detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared to published spike ectodomain structures. Interestingly, we also observed novel interactions between the spike trimers allowing formation of higher order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.

17.
Int J Biol Macromol ; 144: 143-150, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31843606

RESUMEN

Herein we describe the interaction of starch, urea, and melamine (C3N6H6) in composite materials for use as controlled-release plant fertilizer. Slow-release fertilizers are important in minimizing nutrient losses due to run-off, leaching, and other factors. Urea is an effective plasticizer for starch and is an important nitrogen fertilizer throughout the world. Melamine also has high nitrogen content and could be combined with urea-starch composites to provide enhanced controlled-release fertilizer. This study reports the structural interaction and the performance gain of melamine addition to starch-urea composites. Composites were characterized by spectroscopic techniques (FT-Raman and 13C NMR) detailing the interaction between melamine, urea, and starch. These interactions helped facilitate extrusion processing by lowering viscosity and processing temperatures suggesting an enhanced starch plasticizing effect of starch-urea-melamine composites. Further research into the co-plasticization of starch by urea and melamine could be exploited for improved controlled-release fertilizer products. Further research into the co-plasticization of starch by urea and melamine could be exploited for improved controlled-release fertilizer products.


Asunto(s)
Fertilizantes/análisis , Plastificantes/química , Almidón/química , Triazinas/química , Urea/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética con Carbono-13 , Espectrometría Raman , Almidón/ultraestructura , Difracción de Rayos X
18.
Vaccine ; 38(5): 1258-1270, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31761502

RESUMEN

Globally, human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children. There are no licensed vaccines despite the high worldwide disease burden. RSV fusion (F) glycoprotein vaccine is the most advanced candidate for maternal immunization. In this report, a baboon maternal immunization model was used to assess the immunogenicity and protection of infants against pulmonary challenge with human RSV/A. Vaccination in the third trimester produced high anti-RSV F IgG titers and virus-neutralizing antibodies. Infants born to immunized females had high levels of serum RSV antibodies that were comparable to maternal levels at birth and persisted for over 50 days with a half-life of 14-24 days. Furthermore, infants from immunized females and challenged with RSV/A were healthy, developed less severe disease, and had only mild pulmonary inflammatory changes whereas infants born to non-vaccinated females developed more severe disease with marked to moderate interstitial pneumonia, pulmonary edema, and bronchiolar obstruction. These results support the further development of the RSV F vaccine for maternal immunization.


Asunto(s)
Glicoproteínas/inmunología , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Femenino , Glicoproteínas/administración & dosificación , Madres , Papio , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/inmunología , Vacunación , Proteínas Virales de Fusión/administración & dosificación
19.
Vaccine ; 37(42): 6134-6138, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31492474

RESUMEN

dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.


Asunto(s)
Toxinas Bacterianas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Enterotoxinas/inmunología , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/inmunología , Vacunación/métodos , Adhesinas de Escherichia coli/inmunología , Administración Cutánea , Animales , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología
20.
Vaccine ; 35(40): 5366-5372, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28844407

RESUMEN

Influenza viruses frequently acquire mutations undergoing antigenic drift necessitating annual evaluation of vaccine strains. Highly conserved epitopes have been identified in the hemagglutinin (HA) head and stem regions, however, current influenza vaccines induce only limited responses to these conserved sites. Here, we describe a novel seasonal recombinant HA nanoparticle influenza vaccine (NIV) formulated with a saponin-based adjuvant, Matrix-M™. NIV induced hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies against a broad range of influenza A(H3N2) subtypes. In a comparison of NIV against standard-dose and high-dose inactivated influenza vaccines (IIV and IIV-HD, respectively) in ferrets NIV elicited HAI and MN responses exceeding those induced by IIV-HD against homologous A(H3N2) by 7 fold, A(H1N1) by 26 fold, and B strain viruses by 2 fold. NIV also induced MN responses against all historic A/H3N2 strains tested, spanning more than a decade of viral evolution from the 2000-2017 influenza seasons whereas IIV and IIV-HD induced HAI and MN responses were largely directed against the homologous A(H3N2), A(H1N1), and B virus strains. NIV induced superior protection compared to IIV and IIV-HD in ferrets challenged with a homologous or 10-year drifted influenza A(H3N2) strain. HAI positive and HAI negative neutralizing monoclonal antibodies derived from mice immunized with NIV were active against homologous and drifted influenza A(H3N2) strains. Taken together these observations suggest that NIV can induce responses to one or more highly conserved HA head and stem epitopes and result in highly neutralizing antibodies against both homologous and drift strains.


Asunto(s)
Hurones/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Nanopartículas/química , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Pruebas de Inhibición de Hemaglutinación , Hemaglutininas/inmunología , Hemaglutininas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...